Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore.
نویسندگان
چکیده
The differentiation of vegetative cells of Bacillus subtilis into spores involves asymmetric cell division, which precedes complete chromosome partitioning. The DNA translocase SpoIIIE is required to translocate the origin distal 70% of the chromosome from the larger mother cell into the smaller prespore, the two cells that result from the division. We have tested the effect of altering the time and location of SpoIIIE synthesis on spore formation. We have expressed the spoIIIE homologue from Sporosarcina ureae in B. subtilis under the control of different promoters. Expression from either a weak mother cell-specific (sigma(E)) promoter or a weak prespore-specific (sigma(F)) promoter partly complemented the sporulation defect of a spoIIIE36 mutant; however, expression from a strong prespore-specific (sigma(F)) promoter did not. DNA translocation from the mother cell to the prespore was assayed using spoIIQ-lacZ inserted at thrC; transcription of spoIIQ occurs only in the prespore. Translocation of thrC::spoIIQ-lacZ into the prespore occurred efficiently when spoIIIE(Su) was expressed from the weak sigma(E)- or sigma(F)-controlled promoters but not when it was expressed from the strong sigma(F)-controlled promoter. It is speculated that the mechanism directing SpoIIIE insertion into the septum in the correct orientation may accommodate slow postseptational, prespore-specific SpoIIIE synthesis but may be swamped by strong prespore-specific synthesis.
منابع مشابه
Separation of chromosome termini during sporulation of Bacillus subtilis depends on SpoIIIE.
Bacillus subtilis undergoes a highly distinctive division during spore formation. It yields two unequal cells, the mother cell and the prespore, and septum formation is completed before the origin-distal 70% of the chromosome has entered the smaller prespore. The mother cell subsequently engulfs the prespore. Two different probes were used to study the behavior of the terminus (ter) region of t...
متن کاملA conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis.
Spore formation in Bacillus subtilis begins with an asymmetric cell division that superficially resembles the division of vegetative cells. Mutations in the spoIIIE gene of B. subtilis partially block partitioning of one chromosome into the smaller (prespore) compartment of the sporulating cell. Point mutations that specifically block prespore chromosome partitioning affect a carboxy-terminal d...
متن کاملVisualization and functional dissection of coaxial paired SpoIIIE channels across the sporulation septum
SpoIIIE is a membrane-anchored DNA translocase that localizes to the septal midpoint to mediate chromosome translocation and membrane fission during Bacillus subtilis sporulation. Here we use cell-specific protein degradation and quantitative photoactivated localization microscopy in strains with a thick sporulation septum to investigate the architecture and function of the SpoIIIE DNA transloc...
متن کاملAssembly of the SpoIIIE DNA Translocase Depends on Chromosome Trapping in Bacillus subtilis
Sporulation in Bacillus subtilis is an attractive system in which to study the translocation of a chromosome across a membrane. Sporulating cells contain two sister chromosomes that are condensed in an elongated axial filament with the origins of replication anchored at opposite poles of the sporangium. The subsequent formation of a septum near one pole divides the sporangium unequally into a f...
متن کاملSeptal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis.
The 787 amino acid SpoIIIE protein of Bacillus subtilis is required for chromosome partitioning during sporulation. This process differs from vegetative chromosome partitioning in that it occurs after formation of the septum, apparently by transfer of the chromosome through the nascent septum in a manner reminiscent of plasmid conjugation. Here we show that SpoIIIE is associated with the cell m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 185 3 شماره
صفحات -
تاریخ انتشار 2003